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Abs tr act – I n  t h i s  p ap e r, n ovel low  los s , w id e b an d w i d t h , c om p act 
cop lan ar s t rip l in e/cop lan ar  w avegu id e vert ical in t e rcon n e ct s  w i t h 
180°  p h as e s h if t  an d  vert ic ally i n t ercon n ect e d  b alu n s  f or 
R F / m icrow ave in t egrat ed  cir cu it s  are d e m on s t r at ed . Th e
in t ercon n ect s  an d  b al u n s  ar e f ab r icat ed  on  h i gh  res is t ivi t y s il icon 
w af er w it h  a t h in  layer of  s p in - on - glas s  as  an  in s u lat or b et w ee n 
t h e  b u rie d  an d  t h e el evat ed  s t rip  con d u ct ors  w h ich  are
in t ercon n ect ed  b y m ic rovias . Th e m eas u r ed  an d  s im u l at ed 
ch aract er is t ics  of  t h es e in t ercon n ect s  are p r es en t e d  an d  t h ey s h ow 
t h at  very com p act , low  los s  an d  w id e b an d w id t h  circ u it s  are
f eas ib le w it h  t h is  t e ch n ology. Th is  t ec h n ology h as  t h e p ot en t ial t o
s ign if ican t ly e n h an ce  t h e p erf orm an ce of  am p l if iers , f ilt ers , an d 
in t egrat e d  an t e n n as  i n  S i/S iG e b as ed  R F /m icrow ave I C s .

I. INTRODUCTION

Silicon/silicon germanium (Si/SiGe) based RF/ microwave
integrated circuits (ICs) [1] for wireless communications/
sensors require linear amplifiers for low distortion and
filters for interference suppression. In some situations they
may also require an integrated planar antenna for
transmission/reception, in applications such as automobile
collision avoidance. The amplifiers may require a balun to
realize a push-pull circuit to suppress the second-order
intermodulation products and thus enhance the spurious
free dynamic range. The filters may require a phase inverter
for impedance transformation. The antenna such as, log-
periodic dipole array may require a fixed 180° phase shift
for generating an endfire beam.

In this paper, we present several new integrated circuit
design concepts for: (a) wide bandwidth vertical
interconnects with 180º phase shift and (b) vertically
interconnected baluns. These interconnects and baluns are
fabricated on a high resistivity (HR) silicon wafer. The
vertical interconnects discussed here constitute a small
section of coplanar stripline (CPS) and coplanar waveguide
(CPW) at two levels separated by a thin layer of spin-on-
glass (SOG). The interconnections between the two levels
are realized by metallized vias. The CPS and CPW have the
advantages of eliminating backside processing due to
uniplanar construction, thus simplifying vertical integration
by the use of metallized vias. In addition, CPS and CPW
allow easy integration of other transmission media, such as,
slotline, and micro-CPS [2] for greater design flexibility.
The SOG has the advantage of low dielectric constant [3]
and hence low parasitic coupling capacitance. In addition,
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the SOG planarizes the circuit and this facilitates vertical
integration [4]. The HR silicon wafer (r > 3000 W cm) has
the advantage of lowering the signal attenuation in addition
to improving the isolation between adjacent circuits.

In the following sections, first, the fabrication process is
briefly explained. This is followed by a discussion of the
design considerations, measured insertion loss and return
loss of the CPS vertical interconnects with 180o phase shift.
The interconnects considered are: (a) CPS vertical
interconnect with 180° phase shift, (b) CPW vertically
interconnected by CPS overpass and with 180° phase shift,
(c) CPW vertical interconnect with 180° phase shift and
(d) CPS-to-elevated CPW balun. The numerical simulations
of the circuits are carried out using the CST microwave
studio™*. In the simulations, the CPS and CPW conductors
are assumed to be perfectly conducting. In addition, the
silicon substrate as well as the SOG layer are considered as
perfect dielectrics.   

II. INTERCONNECT FABRICATION

As a first step in fabricating the aforementioned
interconnects, the buried strip conductors are fabricated on
the HR silicon wafer. The strip conductors are fabricated
using a lift-off process. The thickness of the titanium/gold
metal is about 0.8 mm. Next, a thin insulating spacer layer
to support the elevated strip conductors is built-up to the
required thickness using multiple spin-coats of  Accuglass®

512. The thickness h1 of the SOG used here is about
2.0 mm. Following this, the vias for the vertical interconnect
are patterned using photoresist and dry etched in a
fluorocarbon-based plasma. Finally, the elevated strip
conductors are  fabricated with titanium/gold by a second
lift-off process. During this step the via holes are metallized
to ensure electrical continuity between the buried and the
elevated strip conductors. The thickness of the elevated
strip conductor is about 2.0 mm. The cross-sections of the
CPS and CPW with a SOG overlay are shown in Fig. 1.     

III. DESIGN, RESULTS AND DISCUSSIONS

The design considerations for the via hole and probe pads
required for each of the aforementioned interconnects are as
follows: each via has a diameter d which is about 0.75 times
the strip width S and is symmetrically located on the strip
conductor. The probe pads in the case of CPS circuits for
on-wafer characterization using signal-ground RF probes
are about 100¥100 mm in size. In the case of CPW circuits,
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the center strip conductor as well as the ground planes are
extended to form the probe pads. These CPW interconnects
are characterized using ground-signal-ground RF probes.
The length of the CPS and the CPW between the
input/output ports of the circuit and the probe pads is
700 mm for all the circuits investigated here. The losses
associated these connecting lines and the probe pads are de-
embedded using on-wafer CPS and CPW Thru-Reflect-Line
(TRL) calibration standards. The coplanar stripline and
coplanar waveguide circuits investigated here are uniplanar
in construction and hence do not have a ground plane on the
opposite side of the wafer. Therefore, the wafer is
supported on a Styrofoam™ block, instead of the regular
metal vacuum chuck, in the RF probe station while
measuring the S-parameters.

A. CPS vertical interconnect with 180º phase shift:

A schematic and microphotograph of the circuit are shown
in Figs. 2(a) and 2(b), respectively. In this circuit, the strip
conductors are transposed to provide the 180°°° phase shift.
This type of inter-connect is ideally suited for adding a
180° phase shift to the terminals of each element in a
log-periodic array as explained in [5]. The characteristic
impedance Z0(CPS) is 50 W.

The measured (de-embedded) and simulated insertion loss
(S21) and return loss (S11) are better than –0.5 dB and
–20.0 dB respectively over the frequency range of 3 to
18 GHz (Fig. 3). The numerical simulations of this circuit
show that the insertion loss is negligibly small and the
return loss is better than –18.0 dB across the 3 to 18 GHz
frequency range. The measured phase difference between
the CPS vertical interconnect with 180° phase shift and a
CPS through line of equivalent length is shown in Fig. 4.

The phase difference is 180° at the center frequency of
10.5 GHz and deviates from 180° by 8° at the two band
edges which are at 3 and 18 GHz respectively. The phase is

Figure 1.—Coplanar stripline (CPS) and Coplanar
   waveguide (CPW) on a HR-silicon wafer with a
   SOG overlay, h = 400 �m, �r = 11.7, h1 = 2 �m,
   �r1 = 3.1.
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Figure 3.—Measured (De-embedded) and simulated 
   insertion loss (S21) and return loss (S11) of CPS 
   vertical interconnect with 180  phase shift.
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Figure 2.—(a) CPS vertical interconnect with 180   phase
   shift W1 = 65 �m, S1 = 5 �m, d = 40 �m, L = 265 �m,
   L1 = 282.1 �m. (b) Microphotograph of CPS vertical
   interconnect with 180° phase shift.
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within ±3° from 180° over 3 GHz band centered at
10.5 GHz which results in a bandwidth of 28.5 percent.

B. CPW vertically interconnected by CPS overpass with
180º phase shift:

A  s ch em a ti c a nd  m ic r op ho t og r a ph  of  t h e ci r c u it  a r e s h ow n  i n
F ig s . 5 ( a)  a n d 5( b) , r es p ec ti ve l y. T he  c ha r ac te r is ti c
i m p ed an c e Z 0( C P S )  an d Z 0( C P W )  ar e 50  W. T he  m ea s ur ed  ( d e- 
e m b ed de d )  an d  s im ul a te d i ns er ti o n lo s s  ( S 21)  a nd  t h e r e t ur n
l os s  ( S 11)  a r e  s h ow n i n F i g. 6. T h e in s e r ti on  lo s s  a n d th e 
r et ur n l os s  a r e  b et t er  t h an  – 1.0  d B a nd  – 17 .5 dB r e s p ec t iv el y 
u p to  6 .0 G H z  w hi c h in c lu de s  t he  I S M  ba nd s . T h e  m ax im u m 
i ns er ti o n lo s s  o f  th e c ir cu i t is  – 1 .7 5 d B. T he  m e as u r e d r e t ur n
l os s  is  be tt e r  th an  –1 3 d B ac r o s s  th e  e nt ir e  f r e q ue nc y r an ge  of 
3  t o 18 .0 G H z . T h e d is cr e pa nc ie s  i n t he  m ea s ur ed  an d
m od el ed  S - pa r am et er s  a r e  at tr ib u te d t o th e s im pl i f i ca ti o ns  i n 
t he  s im u la te d  g eo m e t r y . S pe ci f i c al ly , t he  c o m p en s at in g
n ot ch es  in  t h e el ev a te d l in es  w e r e  n o t in cl u de d.

C. CPW vertical interconnect with 180º phase shift:

A schematic and microphotograph of the circuit are shown
in Figs. 7(a) and 7(b), respectively. The line has a
characteristic impedance Z0(CPW) = 50 W . The measured
(de-embedded) and simulated insertion loss (S21) and the
return loss (S11) are better than –1.0 dB and –15.5 dB
respectively up to 6.5 GHz. The measured return loss is
better than –11 dB across the entire frequency range of 3 to
18.0 GHz. These characteristics are shown in Fig. 8. As in
case B, the discrepancies between measured and simulated
S-parameters are attributed to the absence of compensating
notches in the simulations.

D.  CPS-to-elevated CPW balun with vertical
interconnects:

In this circuit shown in Fig. 9, the CPS and the elevated
CPW are fabricated on the HR silicon wafer and on the
SOG layer respectively. One of the strip conductors of the
CPS is extended below the SOG layer to form the buried
center strip conductor of the CPW, while the other CPS
strip conductor is terminated in a via. This via provides a
vertical interconnection to the elevated finite width ground
planes of the CPW. The elevation or the height provides an

 

Figure 6.—Measured (De-embedded) and simulated
   insertion loss (S21) and input return loss (S11) for 
   CPW vertically interconnected by CPS overpass 
   and with 180  phase shift.
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Figure 4.—Measured phase difference between an
   equivalent CPS through line and the CPS vertical
   interconnect with 180  phase shift.
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Figure 5.—(a) CPW vertically interconnected by CPS
   overpass with 180  phase shift. W = 34 �m,
   G = 239 �m, S = 54 �m, S1 = 4 �m, d = 40 �m,
   W1 = 54 �m, L = 300 �m. (b) Microphotograph of
   CPW vertical interconnectd by CPS overpass.
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Figure 9.—CPS to CPW balun with burried center strip
   conductor and vertical interconnects W = 34 �m,
   G = 239 �m, S = 54 �m, S1 = 4 �m, W1 = 54 �m,
   d = 40 �m.
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additional design parameter which can be used first, to
obtain a target Z0, and second, to lower the attenuation as
explained in [6]. The characteristic impedance Z0(CPS) and
Z0(CPW) are both 50 W. The results for this structure will be
presented at the conference.

II. CONCLUSIONS

Novel vertical interconnects with 180° phase shift and
vertically interconnected balun for integrated circuit
applications at RF/microwaves frequencies have been
demonstrated. The vertical interconnects have small
dimensions compared to the wavelength of operation,
resulting in low parasitics. The CPS vertical interconnect
with 180° phase shift has almost ideal performance with
low loss, good impedance match, and very wide bandwidth
extending from 3 to 18 GHz. The CPW vertical
interconnects have low loss and good impedance match up
to 6.5 GHz which includes the ISM bands. The results
presented demonstrate the potential of the vertical
interconnects with 180° phase shift/baluns for amplifiers,
filters and integrated antennas in Si/SiGe based
RF/microwave ICs.
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Figure 7.—(a) CPW vertical interconnect with 180   phase
   shift S = 54 �m, W = 34 �m, G = 239 �m, d = 54 �m,
   L = 298 �m, L  = 230 �m. (b) Microphotograph of CPW1
   vertical interconnect with 180   phase shift.
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